

May 22, 2003

Tom Clark & Michael Arner

<u>Tom.Clark@utcfuelcells.com</u> Michael.Arner@utcfuelcells.com

Motor - Blower Technologies

Program Objectives / Schedule

- 1. Develop a blower technology base for ambient fuel cells
- 2. Reduce weight and cost
- 3. Increase Performance
- Improve Reliability
- 5. Develop a supplier base

Motor - Blower Technologies

Ambient Pressure Fuel Cell Blower Performance Requirements
75 kW Power Plant

Motor - Blower Technologies

Three Blowers Being Developed by Two Subcontractors

- 1. Vane Axial Cathode Air Blower, PADT
- 2. Regenerative FPS Air Blower, PADT

3. Centrifugal FPS Air Blower, R&D Dynamics

FPS Regenerative

CAB Vane Axial

FPS Centrifugal

Motor - Blower Technologies

Cathode Air Blower Goals

- Performance: 1 psi @ 170 cfm
- Design for low cost < \$75 at 100K units / year
- Demonstrate overall efficiency > 60%
- Design for 5000 hour service life
- Design blower that is easily scalable in flow
- Deliver hardware for Q4 2003 DOE P/P demonstration

Prototype Exceeds Efficiency Target

Motor - Blower Technologies

Cathode Air Blower Status

- Design Features
 - Achieved compact integrated design
 - Selected mixed flow axial machine
 - Motor cooled by process fluid
 - Designed for manufacturability
 - Utilization of injection molded parts
- Technical Accomplishments
 - Prototype blower meets flow and pressure specifications
 - Custom motor and controller meets performance expectations
 - Resolved motor rotor heating by increasing switching frequency to 80 kHz
 - High volume configuration optimization underway
 - Volume quoted cost projection: \$83.95
 - Remaining work emphasizes cost reduction and increasing robustness

Motor - Blower Technologies

Remaining CAB Technology Tasks

- Finalize blower design for high volume mfg.
 - Continued manufacturing cost analysis
 - Plastic over-mold motor housing test
 - Evaluate effects of thermally potted motor winding
 - Bearing liner overmold test
- Finalize blower detailed design for low-cost / initial volume mfg, make and test prototypes
- Complete blower durability / reliability testing
 - Bearing life, shock & vibration, creep, high temperature testing
- Develop and implement sensor-less motor controls into controller and redesign for low cost.

Motor - Blower Technologies

FPS Blower Goals

- Performance: 12 psi @ 70 cfm
- Design for low cost < \$75 at 100K units / year
- Demonstrate overall efficiency > 50%
- Weight: 10 lbs (includes controller)
- Design for 5000 hour service life
- Develop novel regenerative blower technology that provides higher efficiency
- Deliver hardware for Q4 2003 DOE P/P demonstration

Regenerative FPS Blower

Motor - Blower Technologies

PADT FPS Regenerative Blower Project Status

- Extensive CFD work and testing has indicated <u>low efficiencies</u>
- Low aerodynamic efficiency compounds motor heating problem
- 2 stage approach was evaluated but was large, expensive and resulted in thermal growth issues
- Remaining work will entail aerodynamic testing of promising geometries

Motor - Blower Technologies

Aero Efficiencies are Low

- Regen. was chosen because it builds good pressure at low flow with lower RPM
- However, regens are inherently low in efficiency
- Carry over is main efficiency culprit which especially at high pressure ratios
- Motor rotor heating may also contribute to trend
- Test matrix underway with SLS hardware to establish peak efficiency

Motor - Blower Technologies

Regenerative Blower Technical Lessons Learned

- Regenerative air blowers are most efficient at low pressure ratios, < 1.3
- Significant performance losses are incurred due to carry-over of preworked air from outlet to inlet.
- Exit to inlet port leakage impacts efficiency and elevates inlet air temperature
- Two stage regenerative approaches should be avoided.
 - Relative growth between stage 1 and stage 2 lead to large clearances and poor performance.
 - Transferring air from one stage to the next was very inefficient
 - Sealing between the stages was very difficult.
- Low pump head efficiencies lead to high motor heat rejection
- RPM reduction with a regenerative approach is ~ factor of 4 over centrifugal approach. However efficiency is approx. ½ of a centrifugal machine.

Motor - Blower Technologies

Regenerative Blower Down-select

- The regenerative approach is too inefficient for this particular specification
- CFD results did lead to modest improvements (3-5%) on paper. 6 sets of SLS hardware have been produced to explore the expected trends
- Test final set of SLS hardware and issue summary report
- Results of this work could be used in other fuel cell applications that are well suited to regenerative compressors. Hydrogen Recycle and Moderate pressure Cathode air deliveries are potential applications

Centrifugal FPS Air Blower

Motor - Blower Technologies

FPS Blower Performance

Motor - Blower Technologies

FPS Centrifugal Air Blower Status

- Design Features
 - High speed centrifugal design, 140K rpm
 - Utilizes foil air bearing technology
 - Motor and controller air cooled
 - Total Weight 30 lbs
- Project Accomplishments
 - Foil air bearings and rotating group tested to 153 Krpm
 - Aerodynamic performance and controller verified to 108,000 rpm, performance meets predictions
 - Blower / controller cost projection, in volume: \$163
- Technical Issue
 - Heat buildup demagnetizes motor rotor

Motor - Blower Technologies

FPS Blower

Rotating Assembly

Motor - Blower Technologies

R&D Dynamics FPS Blower, Remaining Tasks

- Demonstrate blower with new motor and controller
 - New motor designed to minimize rotor heating and eddy current losses via laminated rotor magnet and proprietary rotor magnet sleeve
- Incorporate improved rotor cooling scheme
- Performance test to full speed
- Complete blower durability / reliability testing
 - Bearing life, shock & vibration, creep, high temperature testing
- Refine and finalize manufacturing cost estimates
- Evaluate and mitigate acoustic noise

